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Abstract

Canal surfaces are a special occurrence of envelopes of parameterized families of surfaces
in 3D space, namely envelopes of families of spheres centered on a given space curve. When the
radius of the sphere is constant, they are called tubular surfaces, or simply tubes. In every country,
numerous examples can be found all around (water pipes, canals for traffic of merchandises, etc.
All these can incite to study such objects or models in mathematics. Dynamic Geometry Systems
are an efficient tool to model such concrete objects, as they enable both a geometric construction
and an exploration of the corresponding algebraic data (equations, parametric presentation). In
order to have a more powerful tool for the algebraic computations, a Computer Algebra System
can be used, whence a new need to communicate between DGS and CAS. In the past, a concrete
construction of such canal surfaces was viewed as an artistic creation, whose abstract basis was
quite complicated to grasp. For the beginner, understanding the switch from a concrete occurrence
towards abstraction (equations, etc.) was a non-trivial issue. Neither was the reverse direction.
We start from a geometric description of a spinal curve and of spheres centered on it, from there
we derive equations whose solutions describe the desired surface. Nowadays, these paths can
be completed by a new step, from an abstract presentation with equations towards a concrete
realization using 3D printing. This approach, from real world to mathematical presentation, and
then back to concretization, is typical of STEAM education.

1 Introduction
In the past, mathematical domains used to be considered separately, both in research and in teaching.
Along the generations, more and more connections between domains emerged, producing richer do-
mains of knowledge. Bridges have been built between mathematics and other domains of knowledge;
a modern approach is called STEAM, an acrostic for Science, Technology, Engineering, Arts and
Mathematics. This approach involves exploration, inquiry, discovery, critical thinking and creativity.
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Envelopes of parametric families of plane curves and of surfaces in 3D space are a live domain of
study. They have numerous applications in industry, such as robotics, zones of safety [13], depollution
of soils [22]. Despite their importance, they almost disappeared from the syllabus already in the sixties
of the 20th century, and Thom complained about that situation [32]. New technologies enabled to
revive the topic, and to propose it to both pre-service and in-service teachers. The first software used
in [17] was Derive to explore 1-parameter families of plane curves. In subsequent papers, another
Computer Algebra System (CAS) and a Dynamic Geometry System (DGS) have been used. In [13,
18, 19], these are Maple and GeoGebra. They are used in the present paper too.

A central feature of a DGS is the possibility to visualize and to manipulate directly on the screen all
the objects of plane geometry. The main tools are point dragging and slider bars. Both are commanded
by the mouse, and are central for the man-and-machine relationship. In GeoGebra a slider bar can
run an automatic animation also. The most basic object in GeoGebra are points; for example a line is
defined by 2 points, and a circle can be defined with a center and a point on the circle. Some of the
points are free, and further constructs depend on them. Dragging a free point using the mouse induces
automatically changes in all the constructs dependent on this point. Similar features characterize
slider bars, and multiple sliders can be defined for a family of objects. In order to understand an
object in 3D shown on a screen, the possibility to turn around using the mouse is a must, in order
to discover the object from different points of view. This grants the possibility to explore, analyze,
discover, and then to conjecture results which have to be proven later. Proofs can be written in a
”traditional” way, we mean by pen-and-paper, but a DGS offers also tools for automated exploration
and automated proofs. We refer especially to the algorithms developed by Wu [33, 34, 35] and to
new algorithms which are continuously developed since then, these developments being applied in
classrooms and labs, and receiving feedback from them [29, 5, 4, 9, 10, 24, 28]. Recio and Vélez
analyze the different work areas allowed by a DGS: ”While automatic proving deals with verifying
geometric statements, automatic discovery tries to find complementary hypotheses for statements
to become true or to find the missing hypotheses so that a given conclusion follows from a given
incomplete set of hypotheses”.

Computer Algebra Systems have been initially developed around symbolic computations, whence
their name, to do mathematics. Quickly other features have been implemented. We use the possibil-
ities of symbolic computations together with the graphical affordances, to teach/learn mathematics.
We mean to explore, conjecture, develop a more profound understanding and, if possible, prove. DGS
contribute strongly to this trend.

In contradiction to other scientific domains where the objects under study are graspable physically,
and are often ”on the table”, a mathematical object is an abstract one and can be grasped only via
different representations, symbolic, numerical, graphical, etc. [21]. Switching between registers of
representation enables to consider the same object from different points of view. Generally, a CAS
offers the switching from either symbolic or numerical representation to graphical representation. A
DGS offers this switch, but also a switch in reversed direction, and knows how to translate the changes
made when dragging points or using a slider directly in the algebraic representation. In GeoGebra,
the algebraic window and the graphical windows are fully synchronized. This too is important for R
& D and classroom work.

The graphical affordances of the two kinds of software are sometimes different. In our study,
animations are important. GeoGebra enables continuous animations using the Animation on of a
slider, and also animation driven by the user’s hand on the mouse. A CAS requires writing a specific
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command such as Maple’s animate and then to press a button to run the animation. Several options are
available, such as speed, number of frames, parameter increment, etc. Both kinds of software, DGS
and CAS, allow to save the animation as an animated GIF. In [24], Kovács writes that ”animations
can be performed quickly enough by using today’s computers with implicit computer algebra use. In
the background, without notifying the user on the fact that thousands of symbolic computations are
performed, a pure dynamic geometry experience can be relived, making geometry more geometrical
than before.” More advanced features, described in [28], are available as a companion package called
GeoGebra discovery, new versions being published at a frequent pace1.

We must mention that among other commands for automated exploration and discovery, GeoGe-
bra has a command Envelope for the automated determination of envelopes in a 2D setting. The
current version of Envelope requests the tracer to be a variable point and not a slider for variations
of a real parameter; see [6, 7, 8]. This has an influence on our choices: here we use a parametric
representation of a space curve, and not a pure geometric construction. This has been already the case
for the study of a Maltese Cross as an envelope in [13].

Finally, we add here an old-new way of representing mathematical objects: 3D construction. The
evolution of teaching passed from the concrete representation in wood or metal towards more abstract
drawing on a sheet of paper or plots on a screen. We are now back to a genuine 3D represen

2 Enhancing motivation via concrete occurrences

2.1 Canals in real life
Canals are almost ubiquitous in the world:

• Small canals to bring water from the source to the consumers. Figure 1(a) shows an ancient
canal in Peru2 - pay attention that the shape of the section varies, to ease the fluidity of the flow.
Note that most of these canals are open above, but not always, and pipes can be found. Figure
1(b) shows an underground part of the aqueduct from Solomon Pools in Judea mountains to
Jerusalem. Figure 2 shows an exit to an open-air part of the same system, dating hundreds of

(a) Precolombian water canal (b) Aqueduct in Judea

Figure 1: Ancient canals

1The package is freely downloadable from https://github.com/kovzol/geogebra-discovery
2Source: https://www.audleytravel.com/ca/peru/country-guides/inca-sites-to-visit
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years earlier, and an early 20th century replacement by a pipe3. Note that the pipe seems to
have variable radius, despite the fact that the inner part may be quite different, the larger radius
corresponding to connections of different sections (needed in particular to connect straight and
curved parts).

(a) The pools in 1981 (b) Exit to the air and a pipe

Figure 2: Solomon’s Pools

• Larger canals for the circulation of goods. In Europe, heavy loads used to be transported by
waterways, nowadays these canals are often used for tourism and cruises (Figure 3).

(a) Merchandise transports (b) Variable width

Figure 3: Circulation of goods and tourism

• Entertainement parks yield nice examples. Figure 4 shows an open water slide and a tubular
one.

• At a smaller scale, Figure 5 show pipes which can be found in any household, for a washing
machine or a dish washing machine. One example has variable radius (periodic when the pipe
is straight); as by nature it is very flexible, it can help to visualize several mathematical objects.
It is quite clear that for the second example, two different mathematical surfaces have to be
defined and ”glued” together.

• Washers are shown in Advanced Calculus as examples of surfaces of revolution. They can be
viewed also as canal surfaces.

3Sources: (a) https://commons.wikimedia.org/wiki/File:Solomon%27s_pools2.jpg; (b)
https://www.jpost.com/travel/around-israel/solomon-pools-fit-for-a-king.
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Figure 4: two kinds of water slides

(a) A flexible pipe (b) Two connected
pieces

Figure 5: Home water pipes

These different examples may be an incentive for students for the mathematical study that we
propose. As discussed in [14, 16], the usage of items from the cultural background of the students en-
courage them to study of various more theoretical topics, and then to discover applications. Moreover,
visits on the field (mathematical trails) can contribute to enhancing motivation. The configurations
may be very different, but the presence of such canals in the vicinity of the students may be such an
incentive to study mathematical models, a part of a mathematical trail. The variety itself, or the the
changes along the canals will be a good reason to study canal surfaces with variable radius.

2.2 Mathematics and Art
The “Institut Henri Poincaré” in Paris has a large collection of models of surfaces in 3-dimensional
space, established in the 19th century. Some of them are models of canal surfaces. Apéry wrote
recently a description accompanied by photos [1]. Figure 6 shows two examples, both form the Brill-
Schilling collection: (a) a ruled surface4, and (b) a canal surface, which is the envelope of spheres
with variable radius5. This is the topic of next section. Note that explicit equations are not always
available, and that even then, it is understood that the endeavor to construct these objects was quite
hard.

Figure 7(a) shows a piece of string art6, and Figure 7(b) presents a GeoGebra model7. This model

4https://patrimoine.ihp.fr/item/3490
5https://patrimoine.ihp.fr/item/3392
6It illustrates activities in France, by EchoSciences-Occitanie - https://www.echosciences-sud.

fr/communautes/diffusion-de-la-culture-mathematique-en-occitanie/articles/
mathematiques-des-fils-tendus-vers-le-reve

7https://www.geogebra.org/m/nkxrwmxd
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(a) Ruled surface of degree 3 (b) Canal surface

Figure 6: Physical models of surfaces

is 2-dimensional, but the threads create a ruled surface, because of their thickness. This topic may be
explored in a course in Linear Algebra or elsewhere, and the visualization is important. Moreover,
the animation helps to visualize the envelopes of the various segments in motion.

(a) (b)

Figure 7: A piece of string art and a computerized model

The empty zones, shaped as leaves, are bounded by something which can be modeled as an enve-
lope of segments. The descripition using equations may be unilluminating, thus we will not describe
it her, and we address simpler examples in the next sections.

3 Envelopes and canal surfaces
There exist 4 different definitions of envelopes of 1-parameter families of plane curves, given in [11];
all of them can be adapted to 1-parameter families of surfaces in 3-dimensional space. A version for
1-parameter families of surfaces of Definition 5.8 in [11] (page 80) is the following:

Definition 1 Let Sk denote a family of 1-parameter surfaces in 3D space.

1. The characteristic curves of the family are the limit curves, when ε goes to 0, of the intersection
of nearby surfaces Sk and Sk+ε.
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2. The envelope of this family, if it exists, is the union of the characteristic curves.

Following a 3D version of [11] (5.12 page 81), it can be shown that E is a surface tangent to every Sk.
Suppose that the surfaces Sk are given by an equation of the form F (x, y, z, k) = 0, where k is a

real parameter. The intersection Sk ∩ Sk+ε is determined by the following system of equations:{
F (x, y, z, k) = 0

F (x, y, z, k + ε) = 0
. (1)

After sidewise substraction and computation of a limit for ε going to 0, we obtain the following result:

Proposition 2 If it exists, an envelope of this family is the solution set of the system of equations:{
F (x, y, z, k) = 0
∂
∂k
F (x, y, z, k) = 0

. (2)

Note that this is the only definition of an envelope given by Berger [3]. For elementary situations
(such as [18] III, example 2), the system (2) of (generally) non-linear equations can be solved by
hand. In heavier situations, a Computer Algebra System can be used (the user has already some
understanding of what happens and the usage is not purely as a black box. The solve command may
use different algorithms, according to whether the equations are polynomial or not. The interested
reader can refer also to [17, 19]. As we will see in the next subsection, for canal surfaces we consider
families of spheres, and the characteristic curves are circles.

3.1 Canal surfaces
Definition 3 Let C be a curve in the 3-dimensional space given by a parametrization M(t) and let r
be a function which associates a positive real number r(M) to every point on C. For a point M on C,
we denote by SM the sphere centered at M with radius r(M). If it exists, the envelope of the family
of spheres SM is called a canal surface. The curve C is called the spinal curve of the canal surface. If
the function r is constant, we call the envelope a pipe surface or a tubular surface, or simply a tube.

With the emergence of various technologies, at the beginning plotters, later CAS and Dynamic
Geometry Systems, it became possible to model envelopes in general, and canal surfaces in particular,
on a screen. As these plots are projections of 3D objects on a 2D screen, they have some drawbacks.
For example, Figure 8 illustrates the envelope of spheres of radius 3/2 centered on the parabola in
the x, y−plane whose equation is y = x2. We use here the synchronisation between the 2D window
and the xy−plane in the 3D window. The dotted curves in the 3D window are the circles of the 2D
window. From Figure 8(a) it can be understood that the envelope is self-intersecting, which is not
clear from Figure 8(b). Wehave here a typical situation of the difficulty to visualize 3D objects on a
2D screen. Figure 8(c) is nicer and shows the envelope, but the self-intersection is hidden. Conviction
(not a proof) can be obtained when revolving the plot on the screen. Creating the model with a 3D
printer allows the learner to turn the surface with his/her fingers; see Section 5. Conviction becomes
stronger.
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(a) (b) (c)

Figure 8: A self-intersecting envelope

3.2 Example: a torus
We consider the family of spheres of radius 1/2 centered on the circle in the xy−plane whose center
is at the origin and with radius equal to 2 (the spinal curve). A general equation of these spheres is

(x− 2 cos t)2 + (y − 2 sin t)2 + z2 − 1

4
= 0. (3)

We denote by F (x, y, z, t) the right-hand side of Equation (3). Then we have:

∂F

∂t
= 4(x− 2 cos t) sin t− 4(y − 2 sin t) cos t.

Solving System (2) for this case, we obtain the two following parametric presentations:
x = v cot t

y = v

z =

√
−15 sin2 t+16v sin t−4v2

2 sin t

and


x = v cot t

y = v

z = −
√
−15 sin2 t+16v sin t−4v2

2 sin t

(4)

Note that we obtained the envelope as the union of two components, who are symmetric about the
xy−plane.

Using the method described in [13, 15], we transform these parametrizations into rational parametriza-
tions, then into a system of polynomial equations. These polynomials generate an ideal in R[x, y, z, t].
By elimination we obtain a single polynomial in F1(x, y, z) whose vanishing locus is the desired en-
velope, i.e. we found an implicit equation of the envelope. In the present case, it is easy to identify
this equation as an equation of a torus. Figure 9 has been obtained with GeoGebra, moving the sphere
with the Trace On option. The spinal curve appears by transparency (the dotted circle)8.

8The full synchronisation between the 2D window and the xy−plane in then 3D window is very helpful for moving
teh center of the sphere along the spinal curve.
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Figure 9: A torus as an envelope of spheres

3.3 Example: a necklace
Consider every point P (r, 0, 0) on the x−axis as the center of a sphere of radius | sin r|. They are
defined in GeoGebra using the command Sphere(A,abs(sin(r)). The envelope of this family of spheres,
is displayed in Figure 10; it looks like a necklace.

Figure 10: A necklace

The general equation of the spheres is

(x− r)2 + y2 + z2 − sin2 r = 0. (5)

Solving System (2), we obtain the two following parametric presentations:
x = x = r − sin r cos r

y =
√

sin4 r − t2

z = t

and


x = x = r − sin r cos r

y = −
√

sin4 r − t2

z = t

(6)

Consider now the family of circles centered on the same segment as above, with the same variable
radius. Figure 11 has been obtained using the command Circle(A,abs(sin(r)),i) and Trace On, where
i denotes a unit vector on the x−axis. The figure on the left has been obtained after one run of the
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(a) One parameter run (b) Two one-way-and return

Figure 11: Another construction of the necklace

parameter, the figure on the right after 2 returns. Note the accuracy differences between them and
between them and Figure 10: in Figure 11, white spots appear, which are not present in Figure 10.

Definition 2 is not applicable here, as we have a 1-parameter family of space curves and not 1-
parameter family of surfaces. The space curves are defined by a parametric representation and not by
an implicit equation, which is requested by Definition 2. Kock relates shortly to this case in [23] but
without computational expressions. Here we can use the definition and its translation into a theorem
given by the Mathcurve site9.

Definition 4 The envelope of a 1-parameter family of space curves Ck is the geometric locus E of the
characteristic points of the curves Ck, which are the limit points of the intersection points between Ck
and Ck′ when k′ tends to k. These points only exist if the curve Ck is secant with the infinitely close
curves Ck+dk. E is then tangent at each of its points to a curve Ck and, in general, any curve Ck is
tangent at least at one point to E .

Theorem 5 Suppose that the curve Ck is given by{
F (x, y, z, k) = 0

G(x, y, z, k) = 0
. (7)

Then the envelope exists if and only if the following system of 4 equations
F (x, y, z, k) = 0

G(x, y, z, k) = 0
∂
∂k
F (x, y, z, k) = 0

∂
∂k
G(x, y, z, k) = 0

(8)

has a solution for (x, y, z) for all values of k. This solution gives the parametrization of the envelope.

Note that it is rather exceptional that a family of space curves has an envelope. It is generally a
curve, but may degenerate to a set of isolated points (see [17] 4.2, for an example in 2D).

Here we have F (x, y, z, k) = (x−r)2+y2+z2− sin2 r and G(x, y, z, r) = x−r. System (8) has
no real solution, therefore no envelope exists in the sense of Theorem 5. An extension of the theory
would be welcome; it is discussed, for example, in [31] but is beyond the scope of the present paper.

9https://mathcurve.com/courbes3d.gb/enveloppe/enveloppe.shtml
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Nevertheless, we provide the source code for an animation with Maple, showing successive po-
sitions of the circles. The animation with Trace On creates a surface, generated by the circles with
variable radius. The number of plotted circles is determined either by the slider or by the speed of
moves with the mouse; the less circles are plotted, the more discrete is the plot. In order to have a
feeling of continuity, it is necessary to increase the number of frames and the number of circles which
have to remain on the screen.

F := (x - r)ˆ2 + yˆ2 + zˆ2 - sin(r)ˆ2;
G := x - r;
solve({F = 0, G = 0}, {x, y, z});
circ := allvalues(%):
a1 := animate(spacecurve, [[rhs(circ[1][1]), rhs(circ[1][2]),

rhs(circ[1][3])], z = -3 .. 3], r = -10 .. 10,
scaling = constrained, thickness = 2, trace = 100,
frames = 100):

a2 := animate(spacecurve, [[rhs(circ[2][1]), rhs(circ[2][2]),
rhs(circ[2][3])], z = -3 .. 3], r = -10 .. 10,
scaling = constrained, thickness = 2, trace = 100,
frames = 100):

display(a1, a2);

Figure 12 shows a partial plot in the middle of the animation and the final plot.

(a) (b)

Figure 12: The necklace with a Maple animation

4 A trefoil knot as a canal surface
Consider the space curve C defined by the parametric presentation

x = cos t+ 2 cos 2t

y = sin t− 2 sin 2t

z = sin 3t

(9)

Two views are displayed in Figure 13, obtained with Maple. We will take this curve as a spinal curve
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(a) The trefoil curve C (b) Its projection on the xy−plane

Figure 13: A trefoil space curve

Figure 14: A trefoil space curve

for a family of spheres, namely the family of spheres centered on this curve, with radius 1/2. Figure
14 shows the space curve C and one of the spheres of the family. Figure 15 shows two views of the
envelope of the family, which is a canal surface. Actually it is a tubular surface, as the radius of the
spheres is constant. Both figures have been obtained with GeoGebra; for Figure 15, a point A has
been attached to the curve C and a sphere of center A and radius 1/2 plotted, then A has been dragged
along the curve while the Trace On property has been chosen for the sphere.

A general equation for spheres centered on C with radius 1/2 is

(x− (cos t+ 2 cos 2t))2 + (y − (sin t− 2 sin 2t))2 + (z − sin 3t)2 − 1

4
= 0. (10)

As usual, we denote by F (x, y, z, t) the left-hand side in Equation (10) and solve the System of
Equations (2) in this case. The output is too heavy to be displayed here, and has to be studied using
the software. For the reader’s convenience, we give here the source code with Maple:

c := spacecurve([cos(t) + 2*cos(2*t), sin(t) - 2*sin(2*t), -sin(3*t)],
t = 0 .. 2*Pi, labels = [x, y, z]);

F := (x + (-cos(t) - 2*cos(2*t)))ˆ2 + (y + (-sin(t) + 2*sin(2*t)))ˆ2
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(a) (b)

Figure 15: The concrete knot

+ (z + sin(3*t))ˆ2 - 1/4;
derF := diff(F, t);
env := solve({F = 0, derF = 0}, {x, y, z});
env := allvalues(%);
x1 := simplify(rhs(env[1][1]));
y1 := simplify(rhs(env[1][2]));
z1 := simplify(rhs(env[1][3]));
s1 := plot3d([x1, y1, z1], t = 0 .. 2*Pi, y = -3.5 .. 3.5,

numpoints = 25000, labels = [x, y, z], axes = none);
x2 := simplify(rhs(env[2][1]));
y2 := simplify(rhs(env[2][2]));
z2 := simplify(rhs(env[2][3]));
s2 := plot3d([x2, y2, z2], t = 0 .. 2*Pi, y = -3.5 .. 3.5,

numpoints = 40000, labels = [x, y, z],
style = patchnogrid, axes = none);

display(s1, s2);

Figure 16 shows the output of the display command. We used the style=patchnogrid option for one
of the components only, in order to show how the mesh has been chosen by the software .

Figure 16: The trefoil knot

The output of the computation described with the source code above is really heavy (therefore we
did not display it here). It cannot be reasonably used to 3D print the trefoil. Other parametrizations
may be used. For example, see the method proposed on the dedicated wikipedia page. There a
substitution u = cos t and v = sin t is used. In order to take into account that u2 + v2 = 1, the
computations have to be performed according to v = ±

√
1− u2. Each case provides two components,
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and the envelope is the union of 4 components. Here too, our computations yielded a heavy answer.
A more applicable way for 3D printing has been developed with GeoGebra by Diego Lieban10.

As a final remark in this section, we should note that when plotting a curve with a DGS, the user
has the choice of the plot thickness. Figure 17 shows the same trefoil knot as Figure 14, but with the
maximal thickness offered by GeoGebra. Actually, this can be viewed as a view of a pipe surface,
and a beginner cannot be aware of this fact.

Figure 17: A pipe surface obtained by thickening the plot of a space curve

5 Discussion

5.1 New registers of representation
As mentioned previously, Duval [21] noted that a mathematical object is an abstract object, which
cannot be grasped in our hands, contrary to objects of other scientific domains. It can be studied only
via different registers of representation. Traditionally, these are numerical, symbolic, and graphical,
and the possibility to switch between different registers is of the utmost importance. Different kinds
of software provide different possibilities to switch. Generally, a CAS offers switching from symbolic
representation to graphical representation. Actually it uses in between a numerical representation, but
does not display it if not requested. And if requested, the numerical and graphical representations are
obtained with two distinct commands. Working with a DGS (here GeoGebra), both switching direc-
tions are offered: from symbolic/numerical to graphical and from graphical to symbolic/numerical.
Moreover, the dragging in a DGS enables to explore interactively, and, in the case of Figure 15, it
enabled to have a very smooth display.

The evolution of teaching passed from the concrete representation in wood or metal (we refer
here to Subsection2.2) towards more abstract drawing on a sheet of paper or plots on a screen. In
a more general framework than Mathematics Education, Jerome Bruner [12] proposed three modes
of representation: Enactive representation (action-based), Iconic representation (image-based) and
Symbolic representation (language-based). He described the first years of children development as

E → I → S.

Of course, the topic of the present paper does not belong to these first years, but we can describe

10hrefhttp://www.geogebra.org/3d/kvzcezkp.
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it in Bruner’s terminology. In our case we may have the following sequence:

S → I → E
An equation A plot on a screen A 3d-printed object

The last step (marked by E) can be made concrete with 3D printing. Figure 18 shows: (a) a graphical
presentation with GeoGebra, using point dragging of the center of the spheres along the curve, and
(b) the result of 3D printing for the canal surfaces obtained by spheres centered on a non planar curve,
given by the parametrization (x, y, z) = (cos 2t, sin 2t, 3 sin t).

(a) (b)

Figure 18: A 3D printed tubular surface

This new kind of representation is sometimes feasible directly from the DGS, but in the present
case it requested an extra step. Either point dragging (or using the slider bar) with Trace On for the
spheres, or using the Locus command shows something which is not recognized by the software as a
3D object (a surface). Therefore some algebraic work had to be performed before the GeoGebra file
could be translated into the language of the 3D printer. The 3D printer requires a specific input, mostly
a trianguilated mesh of te object to be printed. This has to be generated either from the equations or
from the parametrization. We have here a new example of the necessity of a dialog between different
kinds of mathematical software, as discussed in [20]. Here we have 3 kinds of technology involved:
a CAS, a DGS and a 3D printer.

Note that we do not have much information on how the handcrafted objects presented in Subsec-
tion 2.2 (Figure 6) have been constructed.

5.2 The role of technology
Using a Computer Algebra System (CAS), it is generally possible to compute parametric presenta-
tions of these surfaces. If the original parametrization of the spinal curve is rational, the equations
describing the envelope are transformed into polynomials; this has been done , for example, in [20].
Then a package for computations of Gröbner bases enables to derive an implicit equation. This is not
always possible. Even when possible, it may be possible to plot with Maple, but not with GeoGebra.
In both cases, there are limitations: with Maple, the plot options have to be chosen in order to avoid
a strange plot (a problem analyzed in [37]), and with GeoGebra the limitation is sometimes on the
degree of the polynomial.

The Electronic Journal of Mathematics and Technology, Volume 17, Number 3, ISSN 1933-282378

220



In early 2000’s a great mathematician published an interview in a French scientific magazine
aimed at a general audience, where he regretted that math educators work with their students in a way
too different from the way researchers work11. His concern is met in the papers quoted in Section 1:
working in a technology rich environment provides experimental approaches, similar for researchers
and their students. Moreover, such an environment enables a revival of classical, and sometimes
almost forgotten domains. In the previous studies we obtained another byproduct: a unifying frame-
work for a family of plane curves, which had been generally viewed as different objects without any
connection between them [13]. We have also an opportunity to re-express the wish to see in the near
future more advances towards automated networking CAS and DGS. The history of such a wish goes
back to the early 2000’s and knew continuous advances, both in programming and in applications
(e.g. [29, 25, 28, 20, 30]).

Three years later, Papadopoulos and Dagdilelis wrote in [26] that a ”DGS allows students to
generate assumptions that later can be verified or rejected through formal proof”, adding that ”this
verification of assumptions takes place much more easily in the DGS environment than in other com-
putational environment or in the more traditional setting of paper and pencil”. We hope that the
different parts of our study will contribute to an incentive to develop skills for exploration, discovery,
conjecture. An accurate verification may be out of reach from the DGS alone (even when a CAS is
implemented in it) , and the derivation of accurate results is obtained by the networking of a DGS and
a powerful CAS together, thus answering both the educators’ requirements and Bourguignon’s wish.
This networking exists already since the implementation of the Giac CAS into GeoGebra [25]. Other
important developments can be found in GeoGebra-discovery.

Combining in class mathematical software together with the concrete realizations and applications
in real world is a genuine STEAM approach to canal surfaces.

Ackowledgement: The author wishes to thank Eva Ulbrich, from Johannes Kepler University,
Linz, Austria, for 3D printing for him various objects. In particular Figure 18 shows her work. He
wishes to thank also the anonymous reviewers for their fruitful remarks.
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Paris, Kwartalnik Historii Nauki I Tech 65 (3) (2020), 97-108. Available:
https://www.ejournals.eu/pliki/art/17658/ (accessed July 2022)
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Solving Context, in (Novotná, J. edt) Proceedings of the International Symposium on Ele-
mentary Mathematics Teaching (SEMT), Prague 2005, 260-268. https://www.semt.cz/
proceedings/proceedings.html
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